Asymmetric Hsp90 N domain SUMOylation recruits Aha1 and ATP-competitive inhibitors.
نویسندگان
چکیده
The stability and activity of numerous signaling proteins in both normal and cancer cells depends on the dimeric molecular chaperone heat shock protein 90 (Hsp90). Hsp90's function is coupled to ATP binding and hydrolysis and requires a series of conformational changes that are regulated by cochaperones and numerous posttranslational modifications (PTMs). SUMOylation is one of the least-understood Hsp90 PTMs. Here, we show that asymmetric SUMOylation of a conserved lysine residue in the N domain of both yeast (K178) and human (K191) Hsp90 facilitates both recruitment of the adenosine triphosphatase (ATPase)-activating cochaperone Aha1 and, unexpectedly, the binding of Hsp90 inhibitors, suggesting that these drugs associate preferentially with Hsp90 proteins that are actively engaged in the chaperone cycle. Importantly, cellular transformation is accompanied by elevated steady-state N domain SUMOylation, and increased Hsp90 SUMOylation sensitizes yeast and mammalian cells to Hsp90 inhibitors, providing a mechanism to explain the sensitivity of cancer cells to these drugs.
منابع مشابه
Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery.
Hsp90 is a molecular chaperone essential for the activation and assembly of many key eukaryotic signalling and regulatory proteins. Hsp90 is assisted and regulated by co-chaperones that participate in an ordered series of dynamic multiprotein complexes, linked to Hsp90s conformationally coupled ATPase cycle. The co-chaperones Aha1 and Hch1 bind to Hsp90 and stimulate its ATPase activity. Bioche...
متن کاملCdc37-Hsp90 complexes are responsive to nucleotide-induced conformational changes and binding of further cofactors.
Hsp90 is an ATP-dependent molecular chaperone, which facilitates the activation and stabilization of hundreds of client proteins in cooperation with a defined set of cofactors. Many client proteins are protein kinases, which are activated and stabilized by Hsp90 in cooperation with the kinase-specific co-chaperone Cdc37. Other Hsp90 co-chaperones, like the ATPase activator Aha1, also are implic...
متن کاملSilencing of HSP90 cochaperone AHA1 expression decreases client protein activation and increases cellular sensitivity to the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin.
AHA1 (activator of HSP90 ATPase) is a cochaperone of the ATP-dependent molecular chaperone, HSP90, which is involved in the maturation, stabilization/degradation, and function of oncogenic proteins. HSP90 operates in a multimeric complex driven by the binding and hydrolysis of ATP. Treatment of cells with the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) results in the degrada...
متن کاملAha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone.
The ATP-dependent molecular chaperone Hsp90 is an essential and abundant stress protein in the eukaryotic cytosol that cooperates with a cohort of cofactors/cochaperones to fulfill its cellular tasks. We have identified Aha1 (activator of Hsp90 ATPase) and its relative Hch1 (high copy Hsp90 suppressor) as binding partners of Hsp90 in Saccharomyces cerevisiae. By using genetic and biochemical ap...
متن کاملBiological and Structural Basis for Aha1 Regulation of Hsp90 ATPase Activity in Maintaining Proteostasis in the Human Disease Cystic Fibrosis
The activator of Hsp90 ATPase 1, Aha1, has been shown to participate in the Hsp90 chaperone cycle by stimulating the low intrinsic ATPase activity of Hsp90. To elucidate the structural basis for ATPase stimulation of human Hsp90 by human Aha1, we have developed novel mass spectrometry approaches that demonstrate that the N- and C-terminal domains of Aha1 cooperatively bind across the dimer inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cell
دوره 53 2 شماره
صفحات -
تاریخ انتشار 2014